From multileg loops to trees ( by - passing Feynman ’ s Tree Theorem ) ∗

نویسندگان

  • Germán Rodrigo
  • Stefano Catani
  • Tanju Gleisberg
  • Frank Krauss
چکیده

We illustrate a duality relation between one-loop integrals and single-cut phase-space integrals. The duality relation is realised by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be extended to generic one-loop quantities, such as Green’s functions, in any relativistic, local and unitary field theories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From loops to trees by-passing Feynman’s theorem

We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiplecut contributions that appea...

متن کامل

AMBRE - a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals

The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d = 4 − 2ε dimensions. It may be applied for tadpoles as well as for multileg and multiloop scalar and tensor integrals. AMBRE uses a loopby-loop approach and aims at lowest dimensions of the final MB representations. It integrates the package MB for the determination of the singularity structure i...

متن کامل

From Trees to Loops and Back

We argue that generic one-loop scattering amplitudes in supersymmetric Yang-Mills theories can be computed equivalently with MHV diagrams or with Feynman diagrams. We first present a general proof of the covariance of one-loop non-MHV amplitudes obtained from MHV diagrams. This proof relies only on the local character in Minkowski space of MHV vertices and on an application of the Feynman Tree ...

متن کامل

Limit distribution of the degrees in scaled attachment random recursive trees

We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...

متن کامل

Loops on Surfaces, Feynman Diagrams, and Trees

We relate the author’s Lie cobracket in the module additively generated by loops on a surface with the Connes-Kreimer Lie bracket in the module additively generated by trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008